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1. Introduction

There has been recently great interest in non-linear sigma models on supercoset targets.

These models have many applications in several branches of theoretical physics. For ex-

ample, they can be used in the descriptions of the theory of quantum Hall efect [1, 2].

However the main motivation for the study of these models comes from string theory. In

string theory the interest in the non-linear sigma models on supercoset targets is based on

the remarkable observation that these models give description of the string theory in curved

Ramond-Ramond backgrounds.1 The Green-Schwarz action in AdS5 × S5 formulated by

Metsaev and Tseytlin in [4] or its alternative form proposed and further developed in [5 – 7]

takes the form of the sigma model on the coset superspace P SU(2, 2|4)/SO(1, 4)× SO(5).

It was also soon discovered that the sigma model on simpler targets, the supergroups

PSL(n, n) has very rich and interesting structure [8 – 10]. In particular, it was shown

that sigma models on cosets G/H where G is Ricci flat supergroup and H is its bosonic

subgroup are conformal to one loop - and it is expected to be conformal exactly - given

a suitable Wess-Zumino term. The important property of this construction is that the

isotropy subgroup H is fix point set of Z4 grading of G.

It was further shown in [11] that the Z4 grading is a key element for demonstration that

the sigma model on P SU(2, 2|4)/SO(1, 4) × SO(5) is classically integrable. This fact was

also demonstrated in case of the pure spinor formulation of superstring on AdS5×S5 [12, 13].

Moreover, since it was shown in [14, 15] that the pure spinor string on AdS5×S5 is consistent

quantum theory one can hope that the integrability persists in the quantum regime as well.

It was shown recently in two remarkable papers [16, 17] that the similar constructions

hold for sigma models on spaces G/H with more general Z2n grading. For any n, the

1For recent interestion discussion of properties of supercosets background, see [3].
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grading permits an introduction of certain preferred Wess-Zumino term. An existence of

this term implies that the equations of motion can be put into the Lax form ensuring the

integrability [17]. It was then shown in [16] that these models are conformally invariant up

to one loop.

Due to these facts we mean that it is important to continue in the analysis of these

sigma models. In particular, the knowledge of the classical Hamiltonian formalism of non-

linear sigma models on the supercoset targets with Z2n grading could be useful for further

study of these models. For that reason the formulation of the the classical Hamiltonian

analysis of the sigma model on supercoset targets is the main goal of this paper.

Let us outline the structure of the paper. In section (2) we introduce the sigma model

action on supercoset targets following [16] and we briefly review its basic properties. Then

in section (3) we formulate the Hamiltonian formalism of given theory. We introduce

canonical variables using the method proposed in [18].2 In section (4) we calculate the

Poisson bracket of the left-invariant currents. We check the validity of our calculations by

comparing the Poisson bracket calculated here with the Poisson bracket derived in [21] and

we find exact agreement. In section (5) we introduce the Hamiltonian for given system and

also determine the equations of motion of the left-invariant currents. Finally, in section (6)

we determine the charge corresponding to the invariance of the action under global left

multiplication. We will calculate the Poisson brackets between these charges and spatial

components of the left-invariant currents.

In summary, we mean that the properties of the non-linear sigma model on supercoset

targets are very interesting and certainly deserve to be studied further. In particular, we

hope that the results derived here could be helpful for an analysis of the quantum properties

of these models. It would be also certainly very interesting to see whether the supercosets

with Z2n, n 6= 2 grading correspond to some nontrivial background in string theory.

2. Formulation of non-linear sigma model on supercoset targets

We begin this section with the brief review of properties of supercosets. We do not want to

give the complete outline of this subject. We rather focus on properties of the supercoset

that are necessary for definition of the non-linear sigma model on it.

Let us consider an associative Grassmann algebra Λ = Λ0 + Λ1, where Λ0 (resp.

Λ1) consists of commuting (resp. anticommuting) elements. Given a supermatrix X =
(

A B

C D

)

that belongs to the supergroup G we define it to be even (odd) if A,D ∈ Λ0 (Λ1)

and B,C ∈ Λ1 (Λ0). We introduce the notation |X| ≡ deg(X) and we write |X| = 0 if X

is even matrix and |X| = 1 if it is odd matrix. Then we can define the supertrace as

Str(X) = Tr(A) − (−1)|X|TrD . (2.1)

This supertrace satisfies an important property

Str(XY ) = (−1)|X||Y |Str(Y X) . (2.2)

2For recent application of this method in string theory and quantum gravity, see [19 – 22].
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The relation between a supergroup and superalgebra is similar to the bosonic case.

The supergroup G associated to the superalgebra g is the exponential mapping of the even

subsuperalgebra of Grassmann envelope Λ ⊗ g

g = exp(xATA) , (2.3)

where TA generate the Lie superalgebra g = geven+godd corresponding to G. We denote |A|

the grade of TA in the Lie superalgebra. Then TA satisfy the supercommutation relationship

[TA, TB ] = TATB − (−1)|A||B|TBTA = fC
ABTC , (2.4)

where the structure constraints fC
AB satisfy the graded Jacobi identity

0 = (−1)|A||C|fE
ADfD

BC + (−1)|B||A|fE
BDfD

CA + (−1)|C||B|fE
CDfD

AB . (2.5)

The xA commute (resp. anticommute) whenever TA are graded even (resp. odd).

As the next step let us now presume that g is Z2n graded and h, the complexified Lie

algebra of the isotropy subgroup H is the subspace of grade zero.3 That is we suppose that

g may be written as a direct sum

g = g0 + g1 + . . . + g2n−1 (2.6)

of vector subspaces where g0 = h and that this decomposition respects the graded Lie

bracket

[gr,gs] ⊂ gr+s mod 2n . (2.7)

We presume that this grading is compatible with the splitting to Grassmann odd and even

variables, namely

g2s ⊂ geven , g2s+1 ⊂ godd , for s = 0, 1, . . . , n − 1 . (2.8)

The basis TA can be chosen to be a disjoint union of bases of gr. The basis element of gr

will be denoted as Tir where ir = 1 . . . ,dim gr. We also use following conventions for the

naming of indices:

iA, jB , . . . generators of g ,

i0 ≡ x, j0 ≡ y, . . . generators of h ,

ir, jr, . . . generators of gr ,

r = 1, . . . , 2n − 1 . (2.9)

We also presume that the supertrace respect the grading in a sense 4

StrXY = StrΩ(X)Ω(Y ) . (2.10)

3The Z2n grading is defined by automorphism Ω : g → g such that [Ω(X), Ω(Y )] = Ω([X, Y ]) , Ω2n = 1

and Ωk 6= 1 for all k < 2n.
4This can be easily demonstrated in case when the action of Ω on X can be represented as an operation

of conjugation Ω(X) = MXM−1 for some matrix M .
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Let us now presume that X ∈ gr , Y ∈ gs so that

Ω(X) = e
irπ

n X ,Ω(Y ) = e
isπ

n X . (2.11)

Then using (2.10) we immediately obtain

StrXY = 0 unless r + s = 0 mod 2n . (2.12)

Now we are ready to formulate the sigma model on G/H, following [16]. We express the

sigma model on G/H in terms of a dynamical field g(xµ) ∈ G where xµ, µ = 0, 1 are

worldsheet coordinates. We write

Jµ = g−1∂µg ∈ g . (2.13)

Note that this current is invariant under the global left action

g′ = Ug ,U ∈ G . (2.14)

We can decompose the current into currents of defined grade

Jµ = J (0)
µ + J̃µ , J (0)

µ ∈ h , J̃µ ∈ g/h , (2.15)

where

J (0)
µ = Jx

µTx , J̃µ =
2n−1
∑

r=1

dim gr
∑

ir=1

J ir
µ Tir ≡

2n−1
∑

r=1

J (r)
µ . (2.16)

In what follows we use the Einstein summation convention. Explicitly, we define

2n−1
∑

r=1

dim gr
∑

ir=1

J ir
µ Tir ≡

∑

r

J ir
µ Tir ,

2n−1
∑

A=0

dim gA
∑

iA=1

J iA
µ TiA ≡

∑

A

J iA
µ TiA , i0 ≡ x . (2.17)

Let us now study the transformation properties of the current under the local right action

g′ = gh , h(x) ∈ H. Using the definition of J we easily obtain

J ′
µ = h−1Jµh + h−1∂µh . (2.18)

Then using the fact that Ω(h) = h it is easy to determine the rules how currents J (0) and

J̃ transform under local right action

J ′(0)
µ = h−1∂µh + h−1J (0)

µ h ,

J̃ ′
µ = h−1J̃µh . (2.19)

The next important object that is needed for definition of the non-linear sigma model on

supercoset target is the metric

KiAjB
= Str(TiATjB

) . (2.20)
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This metric has the nonzero components

Kirj2n−r
= (−1)|r|Kj2n−rir , Kxy = Kyx (2.21)

as follows from (2.10). Using (2.21) we define two form field B as

Birj2n−r
= qrKirj2n−r

, q2n−r = −qr . (2.22)

Note also that (2.22) obeys the graded antisymmetry property

Birj2n−r
= −(−1)|r|Bj2n−rir (2.23)

that follows from (2.21) and from the fact that q2n−r = −qr. Then we can write the action

for non-linear sigma model on supercoset target in the form

S = −

∫

d2x
∑

r

(

1

2
ηµνKirj2n−r

J ir
µ Jj2n−r

ν +
1

2
εµνBirj2n−r

J ir
µ Jj2n−r

ν

)

. (2.24)

Equivalently, using (2.20) and (2.21) the action (2.24) can be written as

S = −

∫

d2x
∑

r

Str

(

1

2
ηµνJ (r)

µ J (2n−r)
ν +

1

2
εµνqrJ

(r)
µ J (2n−r)

ν

)

. (2.25)

3. Hamiltonian formalism

Next step is to determine the canonical variables and define corresponding conjugate mo-

menta. To do this we follow the approach introduced in [18]. We start with the fact that

the current Jµ is flat

∂µJν − ∂νJµ + [Jµ, Jν ] = 0 . (3.1)

With the help of this identity we can express J0 as a function of J1 if we define the operator

D as

∂0J1 = ∂1J0 + [J1, J0] ≡ DJ0 . (3.2)

Now we presume that the currents Jµ obey appropriate boundary conditions so that we

can introduce the inverse operator D−1 to express J0 as

J0 = D−1(∂0J1) . (3.3)

If we insert (3.3) into the action (2.25) we obtain the action that contain the dynamical

variable J1 and its time derivative ∂0J1. Then using the standard method we can define

the momenta conjugate to J1. More precisely, let us extract the part of the action (2.25)

that contains the time components of the currents

S0 =
1

2

∫

d2x
∑

r

Str(J
(r)
0 J

(2n−r)
0 − grJ

(r)
0 J

(2n−r)
1 ) =

1

2

∫

d2x(J̃0J̃0 + J̃0Ĵ1) =

=
1

2

∫

d2x
[

˜D−1(∂0J1) ˜D−1(∂0J1) + ˜D−1(∂0J1)Ĵ1

]

, (3.4)
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where in the second step we have used (2.10) and where we have also defined

Ĵ1 =
∑

r

q2n−rJ
2n−r
1 . (3.5)

Finally the formula ˜D−1(∂0J1) means that we project to the superalgebra of the coset g/h.

Then it is simple task to define the momentum ΠJ as a variation of the action (3.4) with

respect to ∂0J1 and we get

ΠJ =
δS

δ∂0J1
= −

˜
D−1(D−1(∂0J1) + Ĵ1) , (3.6)

where we have used the fact that
∫

d2xStr(D−1(δX)(. . .)) = −

∫

d2xStr(δXD−1(. . .)) . (3.7)

If we now act with D on (3.6) from the left we obtain

DΠJ = − ˜D−1(∂0J1) − Ĵ1 (3.8)

that allows us to express J̃0 as function of canonical variables ΠJ and J1

J̃0 = −DΠJ − Ĵ1 . (3.9)

To proceed further we expand Jµ and ΠJ as

ΠJ =
∑

A

ΠiATiA , J̃0 =
∑

r

J ir
0 Tir , J1 =

∑

A

J iA
1 TiA , Ĵ1 =

∑

r

qrJ
irTir . (3.10)

Then DΠJ takes the form

DΠJ = ∂1ΠJ + [J1,ΠJ ] =
∑

A

(∂1Π
iATiA +

∑

B

JjB

1 ΠkA−Bf iA
jBkA−B

TiA) (3.11)

using the fact that the structure constants have the form f
kA+B

iAjB
as follows from (2.7). Then

with the help of (3.11) and (3.10) the equation (3.9) is equal to

− J ir
0 = ∂1Π

ir +
∑

A

JjA

1 Πkr−Af ir
jAkr−A

+ qrJ
ir
1 ,

Φx = ∂1Π
x +

∑

A

J iA
1 Πj2n−Afx

iAj2n−A
≈ 0 , (3.12)

where the absence of Jx
0 in the action implies an existence of the primary constraint Φx.

Let us now introduce the equal-time graded Poisson bracket that for two classical

observables F,G depending on the phase super-space variables J iA
1 ,ΠjA

is defined as

{F,G} = (−1)|F ||A|
∑

A

[

∂LF

∂J iA
1

∂LG

∂ΠiA

− (−1)|A| ∂
LF

∂ΠiA

∂LG

∂J iA
1

]

, (3.13)
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where the superscript L denotes left derivation. For the components J1 =
∑

A J iA
1 TiA ,

ΠJ =
∑

A ΠiATiA =
∑

A KiAj2n−AΠj2n−A
TiA , the above PB’s read

{

J iA
1 (x),ΠjB

(y)
}

= (−1)|A|δA
Bδi

jδ(x − y) , (3.14)

where ΠiA is defined as

ΠiA = KiAj2n−A
Πj2n−A . (3.15)

We again stress that A that labels the graded subspaces g(A) is in the one to one corre-

spondence with Grassmann property of given elements, namely A odd labels Grassmann

odd subalgebra and A even labels the Grassmann even subalgebra.

Let us now define

Jµ
it
≡ Kirj2n−r

Jj2n−r

µ . (3.16)

Then we can rewrite (3.12) in an alternative form

J0
ir

= −∂1Πir −
∑

A

JkA

1 f
jr+A

irkA
Πjr+A

+ qrJ
1
ir

,

Φx = ∂1Πx +
∑

A

JkA

1 f jA

xkA
ΠjA

(3.17)

using the fact that qr = −q2n−r.

4. Calculation of the current algebra

In this section we will calculate the Poisson brackets between currents J iA
µ using the canon-

ical Poisson brackets derived in the previous section.

We start with the Poisson bracket of the form
{

J0
ir

(x), Jjs

1 (y)
}

. These Poisson brackets

can be easily calculated with the help of (3.14) and (3.17) and we obtain
{

J0
it
(x), Jjt

1 (y)
}

= δj
i ∂xδ(x − y) + f jt

itx
Jx

1 (x)δ(x − y) ,
{

J0
it
(x), Jjr

1 (y)
}

= f jr

itlr−t
J

lr−t

1 (x)δ(x − y) , for r 6= t ,
{

J0
it(x), Jx

1 (y)
}

= fx
itj2n−t

J
j2n−t

1 (x)δ(x − y) . (4.1)

Using (3.16) we obtain the alternative form of Poisson bracket (4.1)

{

J
i2n−t

0 (x), Jjt(y)
}

= Ki2n−tjt∂xδ(x − y) + Jx
1 (x)f

i2n−t

xk2n−t
Kk2n−tjt ,

{

J it
0 (x), Jjr

1 (y)
}

= J
lr+t

1 (x)f it
lr+tk2n−r

Kk2n−rjr ,
{

J it
0 (x), Jx

1 (y)
}

= Jjt

1 (x)f it
jty

Kyxδ(x − y) , (4.2)

where we have also used the fact that 2n + t ∼ t.

In the same way we can determine the Poisson bracket between Φx and J ir
1 , Jy

1

{Φz(x), Jv
1 (y)} = −δv

z∂xδ(x − y) − f v
zwJw

1 (x)δ(x − y) ,
{

Φx(x), J ir
1 (y)

}

= −f ir
xjr

Jjr

1 (x)δ(x − y) . (4.3)

– 7 –
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These Poisson brackets demonstrate how currents J ir
1 transform under the gauge transfor-

mations generated by Φx. It is also clear that J ir
0 has to transform in the same way so

that
{

Φx(x), J ir
0 (y)

}

= −f ir
xjr

Jjr

0 (x)δ(x − y) (4.4)

or equivalently
{

Φx(x), J0
ir

(y)
}

= J0
jr

(x)f jr

xir
δ(x − y) . (4.5)

Now we will calculate the Poisson brackets between zero components of the currents

J iA
0 . Let us start with the Poisson bracket

{

J0
it
(x), J0

j2n−t
(y)

}

. After straightforward, but

slightly involved calculation we obtain
{

J0
it
(x), J0

j2n−t
(y)

}

= (−1)|t|Φx(x)fx
itj2n−t

δ(x − y) , (4.6)

where we have used (3.14) and (3.17) and also the fact that the structure functions of the

supercoset obey the relation

f
kA+B

iAjB
KkA+B lC = −(−1)|B||C|f

kA+C

iAlC
KkA+CjB

(4.7)

and the graded Jacobi identity

0 = (−1)|A||C|f
mA+B+C

iAjB+C
f

jB+C

kBlC
+(−1)|B||A|f

mA+B+C

kBjA+C
f

jA+C

lCiA
+(−1)|C||B|f

mA+B+C

lCjA+B
f

jA+B

iAkB
, (4.8)

where we have also used (2.7). Finally note that (4.6) can be written in the form

{

J
i2n−t

0 (x), Jjt

0 (y)
}

= −Φx(x)f
i2n−t

xk2n−t
Kk2n−tit , (4.9)

where Φx = ΦyK
yx.

As the next step we will calculate the Poisson bracket

{

J0
it
(x), J0

js
(y)

}

, t 6= s . (4.10)

This Poisson bracket can be calculated exactly in the same way as in the previous cases

however now the result strongly depends on the value of qt that appears in (2.22) and that

according to [16, 17] is equal to

qs = 1 −
s

n
. (4.11)

More precisely it turns out that for t + s < 2n the Poisson bracket (4.10) takes the form

{

J0
it(x), J0

js
(y)

}

= −(−1)|s||t|(J1
lt+s

+ J0
lt+s

)(x)f
lt+s

itjs
δ(x − y) (4.12)

while for t + s > 2n it is equal to

{

J0
it
(x), J0

js
(y)

}

= (−1)|s||t|(J1
lt+s

− J0
lt+s

)(x)f
lt+s

itjs
δ(x − y) . (4.13)

It will be also useful to express (4.12) and (4.13) in the alternative form as

{

J it
0 (x), Jjs

0 (y)
}

= (J
lt+s

0 + J
lt+s

1 )(x)f it
lt+sk2n−s

Kk2n−sjsδ(x − y) , for t + s > 2n ,
{

J it
0 (x), Jjs

0 (y)
}

= (J
lt+s

0 − J
lt+s

1 )(x)f it
lt+sk2n−s

Kk2n−sjsδ(x − y) , for t + s < 2n. (4.14)
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We would like to stress that the case n = 2 was previously studied in the context of the pure

spinor superstring on AdS5×S5. The algebra of left-invariant currents was also determined

in [21]. Then it is easy to see that the Poisson brackets (4.14) coincide with the Poisson

brackets derived there if we omit the contributions of the ghost fields. This agreement

serves as further justification of our result.

5. Hamiltonian and equations of motion

In this section we introduce of the Hamiltonian for the non-linear sigma model on supercoset

target. Using the action given in (2.25) we obtain the matter part of the Hamiltonian in

the form

Hmatt =

∫

dxStr(∂0JΠ − L) =
1

2

∫

dxStr(J0J0 + J1J1) (5.1)

or alternatively

Hmatt =
1

2

∫

dx
∑

r

(

J ir
0 Kirj2n−r

J
j2n−r

0 + J ir
1 Kirj2n−r

J
j2n−r

1

)

=
1

2

∫

dx
∑

r

(

(−1)|r|J0
irK

irj2n−rJ0
j2n−r

+ (−1)|r|J1
irK

irj2n−rJ1
j2n−r

)

. (5.2)

Following the general theory of constraint systems we have to introduce to the Hamiltonian

the contribution that corresponds to the fact that the dynamics of the system is restricted

on the constraint surface Φx = 0

Hcon =

∫

dxΓxΦx(x) . (5.3)

It can be shown that the time evolution of the primary constraints Φx does not induce any

secondary constraints so that the whole Hamiltonian takes the form

H = Hmatt + Hcon . (5.4)

With the help of the Hamiltonian (5.4) we can determine the equations of motion for

J0
ir

, J is
1 using the fact that the time evolution of any function X(J,Π) that is defined on

the phase space spanned by J iA
1 ,ΠjB

is governed by the equation

∂0X = {X,H} . (5.5)

With the help of the Poisson bracket that were derived in the previous section and the

form of the Hamiltonian given above we immediately obtain the equation of motion for J is
1

in the form

∂0J
ir
1 = ∂xJ ir

0 + Jx
1 Jjr

0 f ir
xjr

−
∑

t

Jjt

0 J
lr−t

1 f ir
jtlr−t

+ ΓxJjr

1 f ir
xjr

. (5.6)

The form of the equation above suggests that it is natural to choose the Lagrange multiplier

Γx to be equal to (In other words we fix the gauge)

Γx = −Jx
0 (5.7)

– 9 –



J
H
E
P
1
0
(
2
0
0
6
)
0
4
6

and introduce the covariant derivative

∇µXir
ν ≡ ∂µXir

ν + Jx
µXjr

ν f ir
xjr

,

∇µXν
ir

≡ ∂µXν
ir
− JxXν

jr
f jr

xir
,

∇µXν
ir

= Kirj2n−r
∇µXj2n−r

ν . (5.8)

Then we can rewrite the equation (5.6) into the form

−∇0J
ir
1 + ∇1J

ir
0 −

∑

t

Jjt

0 J
lr−t

1 f it
jtlr−t

= 0 . (5.9)

In the same way we can determine the equation of motion for J0
ir

− ∇0J
0
ir + ∇1J

1
ir −

∑

t

(−1)|r||t|+|t|J0
lr+t

Jjt

0 f
lr+t

irjt
−

−
∑

r+t<2n

(−1)|t|+|r||t|J1
lr+t

Jjt

0 f
lr+t

irjt
+

∑

r+t>2n

(−1)|t|+|r||t|J1
lr+t

Jjt

0 f
lr+t

irjt
+

+
∑

r+t6=2n

J
lt−r

1 f jt

irlt−r
Kjtk2n−t

J
k2n−t

1 = 0, (5.10)

where we have also used (5.7). Alternatively, using the currents J ir
µ we can rewrite (5.10)

into the form

− ∇0J
ir
0 + ∇1J

ir
1 +

∑

t

J
kr−t

0 J lt
0 f ir

kr−tlt
+

∑

r+t6=2n

J
kr−t

1 J lt
1 f ir

kr−tlt
−

−
∑

t−r<0

Jjt

1 J
kr−t

0 f ir
jtkr−t

+
∑

t−r>0

Jjt

1 J
kr−t

0 f ir
jtkr−t

= 0. (5.11)

The form of the equation (5.11) simplifies for r = 1 and for r = 2n − 1. In case r = 1 it is

natural to combine (5.9) with (5.11) and we obtain

(ηµν − εµν)∇µJ i1
ν + (ηµν − εµν)

2n−2
∑

t=2

Jk2n+1−t

µ J lt
ν f i1

k2n+1−tlt
= 0. (5.12)

On the other hand for r = 2n − 1 we subtract (5.9) from (5.11) and we get

(ηµν + εµν)∇µJ i2n−1

ν + (ηµν + εµν)
2n−2
∑

t=1

Jjt

µ Jk2n−1−t

ν f
i2n−1

jtk2n−1−t
= 0 . (5.13)

For arbitrary r we can perform the same manipulation. We firstly add (5.9) to (5.11) and

we obtain

(ηµν − εµν)∇µJ ir
ν + ηµν

∑

r+t6=2n

Jkr−t

µ J lt
ν f ir

kr−tlt

−
∑

r+t6=2n

Jkt

0 J
lr−t

1 f ir
ktlr−t

−
∑

t−r<0

Jkt

1 J
lr−t

0 f ir
ktlr−t

+
∑

t−r>0

Jkt

1 J
lr−t

0 f ir
ktlr−t

= 0. (5.14)
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On the other hand if we subtract (5.11) from (5.9) we get

(ηµν + εµν)∇µJ ir
ν + ηµν

∑

r+t6=2n

Jkr−t

µ J lt
ν f ir

kr−tlt

+
∑

r+t6=2n

Jkt

0 J
lr−t

1 f ir
ktlr−t

−
∑

t−r<0

Jkt

1 J
lr−t

0 f ir
ktlr−t

+
∑

t−r>0

Jkt

1 J
lr−t

0 f ir
ktlr−t

= 0. (5.15)

It is easy to see that for n = 2 these equations of motion coincide with the equations of

motion derived in [21] when we again ommit the contributions of ghost fields.

We conclude this section with the derivation of the equation of motion for Jx
1 . With

the help of the Poisson brackets derived in section (4) we immediately obtain

∂0J
x
1 (x) = −

∑

t

(−1)|t|J
j2n−t

1 fx
itj2n−t

Kitk2n−tJ0
k2n−t

+ Jw
1 fx

ywΓy − ∂xΓx. (5.16)

Using (5.7) we can rewrite this equation in the form

∂0J
x
1 − ∂1J

x
0 +

∑

t

J it
0 J

j2n−t

1 fx
itj2n−t

+ Jy
0 Jz

1 fx
yz = 0 (5.17)

that is Maurer-Cartan identity for Jx
µ . In other words the dynamics of Jx

µ is trivial.

6. Global symmetry of the non-linear sigma model

By definition the left-invariant currents J iA = (g−1dg)iA (and consequently the action) are

invariant under the global symmetry g′ = hg where h is a constant element from G. Our

goal is to determine the corresponding conserved charge using standard Noether procedure.

To do this let us presume that h ≈ 1+ ε, where ε(x) = εiATiA depends on the worldvolume

coordinates. Then the variation of the current is equal to

δJµ = g−1∂µεg (6.1)

that implies the variations of the components of the currents J iA
µ in the form

δJ iA
µ = KiAj2n−AStr(gTj2n−A

g−1TkC
)∂µεkC

= KiAj2n−ACj2n−AkC
∂µεkC . (6.2)

It is important to stress that CiAjB
is Grassmann odd for |A + B| = 1 and is Grassmann

even for |A+B| = 0 as follows from the properties of the supertrace and from the fact that

the generator TiA is odd matrix for |A| = 1.

Now with the help of (6.2) we obtain that the variation of the action is equal to

δS = −

∫

d2x
∑

t

(Jj2n−t

µ (ηµν − qtε
µν)Cj2n−tiA)∂νεiA ≡

∫

d2x∂νJ
ν
iA

εiA . (6.3)

Since for fields that are on-shell any variation of the action has to vanish the expression

above implies

∂µJ
µ
iA

= 0 , (6.4)
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where

J µ
iA

=
∑

t

(ηµν − qtε
µν)Jj2n−t

ν Cj2n−tiA . (6.5)

Using (6.4) we can define the conserved charge

qiA =

∫

dxJ 0
iA

= −

∫

dx
∑

t

(J
j2n−t

0 + qtJ
j2n−t

1 )Cj2n−tiA . (6.6)

It is instructive to calculate the Poisson bracket between qiA and JjB

1 . With the help of

the Poisson brackets that were determined in section (4) we obtain

{

J it
1 (x), qjB

}

= −Kitk2n−t∂xCk2n−tjB
− J

lt−r

1 (x)f it
lt−rmr

Kmrk2n−rCk2n−rjB
,

{Jx
1 (x), qjB

} = −J
l2n−r

1 (x)fx
l2n−rmr

Kmrk2n−rCk2n−rjB
. (6.7)

We can simplify this result using the definition of CiAjB
and the properties of left-invariant

currents since

∂xCiBjC
= Str(∂xgTiB g−1TjC

) − Str(TiB q−1∂xgg−1TjC
g) =

= Str(g−1∂xgTiB g−1TjC
g) − (−1)|B||C|Str(g−1∂xgg−1TjC

gTiB ) =

=
∑

A

JkAStr([TkA
TiB − (−1)|A||B|TiBTkA

]g−1TjC
g) =

=
∑

A

JkAf lD
kAiB

Str(TlDg−1TjC
g) =

∑

A

JkAf lD
kAiB

ClDjC
. (6.8)

With the help of this result the first equation in (6.7) takes the form

{

J it
1 (x), qjB

}

=
∑

A

(−1)|t||t+A|J
lt−A

1 f it
lt−AmA

KmAk2n−ACk2n−AjB
(x) −

−
∑

r

J
lt−r

1 f it
lt−rmr

Kmrk2n−rCk2n−rjB
(x) . (6.9)

For |t| = 0 the equation above simplifies as

{

J it
1 (x), qjB

}

= J lt
1 f it

ltx
KxyCyjB

= δgaugeJ
it
1 (x)(CyjB

(x)) . (6.10)

In other words the Poisson bracket between J it
1 , |t| = 0 and qjB

is equal to the gauge

transformation of current J it
1 with the gauge parameter equal to CyjB

(x). However for

|t| = 1 we do not obtain such a clear interpretation since

{

J
i2s+1

1 (x), qjB

}

= −2

n−1
∑

t=1

J
l2s+1−2t

1 f
i2s+1

l2s+1−2tm2t
Km2tk2n−2tCk2n−2tjB

(x) +

+ J
l2s+1

1 f
i2s+1

l2s+1xKxyCyjB
(x) . (6.11)

We again see that the expression on the second line in (6.11) can be written as δgauge

J i2s+1(CyjB
). On the other hand it is not clear to us how to interpret the expression on

the first line.
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Finally, using (6.8) the second equation in (6.7) can be written as

{Jx
1 (x), qjB

} =
∑

r

J
l2n−r

1 (x)f
k2n−r

l2n−rxKxyCyjB
=

∑

r

δgaugeJ
k2n−r

1 (CyjB
(x)) (6.12)

that can be again interpreted as a sum of the gauge transformations of currents J it
1 . At

present it is not completely clear to us how to interpret these results. Since the left-

invariant currents are invariant under the transformations g′ = hg one could expect that

the Poisson brackets between left-invariant currents and the charges corresponding to the

global symmetry of the action are either zero or equal to the gauge transformations that

define coset. We have seen that this interpretation holds for Grassmann even components

of the left-invariant currents. On the other hand we have derived different results for the

Grassmann odd components of the left-invariant currents and as we mentioned above it is

not clear to us how to interpret this result. This issue certainly deserve more precise study

and we hope to return to it in future.
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